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Abstract: We argue that the AdS/CFT calculational prescription for double-trace de-

formations leads to a holographic derivation of the conformal anomaly, and its conformal

primitive, associated to the whole family of conformally covariant powers of the Laplacian

(GJMS operators) at the conformal boundary. The bulk side involves a quantum 1-loop

correction to the SUGRA action and the boundary counterpart accounts for a sub-leading

term in the large-N limit. The sequence of GJMS conformal Laplacians shows up in the

two-point function of the CFT operator dual to a bulk scalar field at certain values of

its scaling dimension. The restriction to conformally flat boundary metrics reduces the

bulk computation to that of volume renormalization which renders the universal type A

anomaly. In this way, we directly connect two chief roles of the Q-curvature: the main

term in Polyakov formulas on one hand, and its relation to the Poincare metrics of the

Fefferman-Graham construction, on the other hand. We find agreement with previously

conjectured patterns including a generic and simple formula for the type A anomaly coeffi-

cient that matches all reported values in the literature concerning GJMS operators, to our

knowledge.
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1. Introduction

Conformally covariant differential operators have been the subject of a continuous inter-

play between physics and mathematics ever since the discovery of conformal invariance of

Maxwell’s equations by Cunningham [1] and Bateman [2] in the early part of last century.

To this early list belongs the Dirac operator, after Pauli’s proof of the conformal invariance

of the massless Dirac equation [3], as well as the conformal wave operator, both in curved

spacetime. The Riemannian variant of the later, the conformal Laplacian, is best known

to mathematicians for its role in the Yamabe problem of prescribing scalar curvature on a

Riemannian manifold [4].
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In the early 80’s a fourth-order conformal covariant was found by Paneitz [5], and

independently by Eastwood and Singer [6], in relation with gauge fixing Maxwell equa-

tions respecting conformal symmetry. It was rediscovered by Riegert [7] while pursuing a

different goal, namely a four-dimensional analog of Polyakov formula [8] for the conformal

(or trace, or Weyl) anomaly, i.e. a non-local covariant action whose conformal variation

leads to the general form of the anomaly. Graham, Jenne, Mason and Sparling [9] further

showed that the conformal Laplacian and the Paneitz operator generalize to a family of

conformally covariant differential operators P2k of even order 2k, with leading term ∆k,

whenever the dimension d of the manifold is odd or d ≥ 2k. These ‘conformally covariant

powers of the Laplacian’ (“GJMS” operators in what follows) P2k were obtained using

the Fefferman-Graham ambient metric [10], a chief tool for the systematic construction of

conformal invariants.1

The feature of the GJMS operators that we will treat in this paper is the conformal

variation of their functional determinant2 encoded in a (generalized) Polyakov formula. In

other words, we focus on the conformal anomaly, and its conformal primitive, associated to

this family of operators. These formulas can be worked out case by case in low dimensions

from heat kernel coefficients whose complexity grows significantly with the dimension of

the compact manifold M. However, Branson [13] succeeded in finding a pattern in terms

of the Q-curvature, in the conformally flat case, to rewrite ‘more invariantly’ the quotient

of functional determinants of a conformally covariant operator A (or a power thereof and

with suitable positive ellipticity properties) at conformally related metrics ĝ = e 2wg in any

even dimension d:

−log
det Â

detA
= c

∫

M
w

(
Q̂d dvĝ +Qd dvg

)
+

∫

M

(
F̂ dvĝ − F dvg

)
+ (global term) (1.1a)

=2c

∫

M
w

(
Qd+

1

2
Pdw

)
dvg+

∫

M

(
F̂ dvĝ−Fdvg

)
+(global term) . (1.1b)

Here F stands for a local curvature invariant and the global term is related to the null space

(kernel) of the operator; both vary depending on what A is, whereas the universal part is

captured by the Q-curvature term. Away from conformal flatness, the pattern is preserved

in d = 2, 4, 6 and conjectured to hold in all even dimension. A related conjecture by Deser

and Schwimmer [14] expresses the infinitesimal variation (anomaly) as a combination of

the Euler density (or Pfaffian), a local conformal invariant and a total derivative;3 but it

can be rephrased in terms of the Q-curvature instead of the Pfaffian.

It was in this context that Branson first defined the Q-curvature, in general even

dimension, from the zeroth order (in derivatives) term of the GJMS operators via analytic

continuation in the dimension. The linear transformation law under conformal rescaling

ĝ = e 2wg of the Q-curvature generalizes that of the scalar curvature in two dimensions,

ed w Q̂d = Qd + Pd w , (1.2)

1In a physical setting, see the recent work [11, 12] for an alternative route.
2In the mathematical literature, the zeta-regularized functional determinant is usually meant.
3See [15] and [16] for independent proofs. The restriction to the conformally flat class, where the Weyl

tensor vanishes, was anticipated in [17].
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and integrates to a multiple of the Euler characteristic on conformally flat manifolds.

Another context in which the Q-curvature plays a central role arises in the volume

renormalization of conformally compact asymptotically Einstein manifolds [18], i.e. man-

ifolds whose filling metric is the Poincare metric of the Fefferman-Graham construction.

The renewed interest in the seminal work of Fefferman and Graham [10], as an outgrowth

of the relation between the geometry of hyperbolic space (Lobachevsky space) and confor-

mal geometry on the sphere at the conformal infinity, has been triggered by the AdS/CFT

Correspondence in physics [19 – 21]. The reconstruction of a bulk metric associated to a

given conformal structure at the conformal infinity [22] and the subsequent evaluation of

the Einstein action with a negative cosmological term becomes the geometrical task in the

limit in which the effective description of string theory is featured by the classical super-

gravity approximation. When the bulk metric is Einstein, the Lagrangian factorizes and

the challenge consists in the regularization of the infinite (infrared divergent) volume. A key

feature of the AdS/CFT duality is the fact that infrared divergences in the bulk are related

to ultraviolet ones on the boundary theory, the so called IR-UV connection [23]. A further

elaboration thereof leads to the mapping of the conformal anomaly of the gauge theory on

the boundary, at large N (rank of the gauge group) and large ’t Hooft coupling, to the

failure of the renormalized bulk action to be independent of the conformal representative of

the metric at the boundary. This analysis was thoroughly carried out by Henningson and

Skenderis [24]. The holographic anomaly associated to the volume is given by the coefficient

v(d) of the volume expansion and its integral gives the coefficient L of the log-divergent term

in the volume asymptotics. The Q-curvature enters here after the observation by Graham

and Zworski [25] that the “integrated anomaly” L is also proportional to the integral of

the Q-curvature. A further refinement by Graham and Juhl [26] results in a holographic

formula for the Q-curvature in terms of the coefficients of the volume expansion.

These later developments involve scattering theory for Poincare metrics associated to

the conformal structure as an alternative route to GJMS operators and to Q-curvature [25,

27]. They are influenced by, and at the same time generalize, results originally discussed in

the physical context by Witten [21] for the “rigid” case of hyperbolic space. They are also

closely related to the AdS/CFT computation of matter conformal anomalies which show

up in the trace of the holographic energy-momentum tensor, in addition to the purely

geometric terms involving curvature invariants of the boundary metric, for certain non-

trivial profiles of the matter fields. Here, the powers of the Laplacian that arise in the

rigid case [28 – 30] naturally generalize to the GJMS operators, as outlined in [29, 30]. In

particular, the GJMS Laplacians show up as residues of the scattering operator SM (λ) at

the poles λ = d/2 + k, k ∈ N. The “rigid” version of the scattering operator SM (λ) is the

two-point function 〈OλOλ〉 of a CFT operator Oλ of conformal dimension λ on R
d or S

d

as conformal boundary of the half-space model or of the ball model of the hyperbolic space

H
d+1, respectively.

In the mapping of anomalies at leading large N, the coupling constant regimes in

which the bulk and boundary computations are done do not overlap; an underlying non-

renormalization of the coefficient of the Euler term (and, therefore, of the Q-curvature) in

the anomaly at leading large N supports the successful matching in two dimensions. The
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same is true for the coefficients of the Euler and Weyl terms in four dimensions, where the

free field computation on the boundary involves a combination of functional determinants of

Laplacians on forms, depending on the field content of the multiplet. However, in six dimen-

sions the coefficient of the Euler density is no longer protected and agreement between the

holographic and the free CFT anomaly computation is found only for the Weyl terms [31].

Moreover, the AdS9 holographic conformal anomaly [32] is still waiting for a CFT8 de-

scription. In consequence, there seems to be little hope to get, via a holographic procedure

involving the classical SUGRA action, the anomaly associated to individual differential

operators (e.g. conformal Laplacian) in generic even dimension d, let alone the full deter-

minant, and to directly connect the Q-curvature terms that naturally arise in both contexts.

In this note, we propose a heuristic “holographic” derivation of the Polyakov formulas

for the GJMS operators in the conformally flat class (1.1). It is based on a remarkable

prediction of AdS/CFT Correspondence, verified in the “rigid” case of hyperbolic space as

bulk metric [33 – 37], relating corrections to the partition functions due to a relevant double-

trace deformation of the CFT, namely a quantum 1-loop in the bulk and a next-to-leading

contribution in the large-N expansion at the boundary. The general situation will involve

(X; g+) as a d+1 dimensional manifold with a Poincare metric and (M ; [g]) as its conformal

infinity. Our working formula will then be the natural generalization of the formal equality

that was shown to be valid in dimensional regularization in the rigid situation [37]:

log
det+[∆X − λ(d− λ)]

det−[∆X − λ(d− λ)]
= − log det SM (λ) . (1.3)

The determinants of the positive Laplacian on the bulk X are evaluated using the Green’s

function method, involving the resolvent at λ for the ‘+branch’ and its analytic continuation

at d−λ for the ‘−branch’. The continuation in the spectral parameter λ to λ = d/2+k, k ∈
N as argument of the scattering operator SM on the compact boundaryM renders then the

functional determinant of the GJMS conformal Laplacians. The crucial point that simplifies

our present computation is that when restricted to the conformally flat class, i.e. metrics on

M conformal to the standard round metric on S
d, the bulkX remains (isometric to) the hy-

perbolic space H
d+1 [22, 38]. In this case, the volume of the hyperbolic space factorizes and

the task is then reduced to volume renormalization, with the only restriction of conformal

flatness of the boundary metric. We focus on the conformal anomaly, which is then traced

back to the holographic anomaly of the renormalized volume. The usual Hadamard regu-

larization of the volume produces an anomaly and a corresponding Polyakov formula which

differs from those obtained by standard zeta-regularization on the boundary, but the uni-

versal type A anomalous term associated to the Pfaffian or to the Q-curvature does agree.

The paper is organized as follows: we start with the physical motivation for the func-

tional determinant identity coming from the generalized AdS/CFT prescription to treat

double-trace deformations of the boundary conformal theory. We then review the rigid

case determinants in the light of several possible regularization techniques. Next we state

the conjectured equality between functional determinants in the general case of a filling

Poincare metric with prescribed conformal infinity. Explicit computations are then pre-

sented in the case of conformally flat boundary metrics for both infinitesimal and finite
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conformal variations. For comparison, we collect then all reported Polyakov formulas for

GJMS operators in the literature, to our knowledge. We finally conclude by summarizing

our holographic findings and hint at possible further extensions. Some background material

is collected in three appendices.

2. The physical motivation: AdS/CFT correspondence

The celebrated Maldacena’s conjecture [19] and its calculational prescription [20, 21] entail

the equality between the partition function of String/M-theory (with prescribed boundary

conditions) in the product space AdSd+1×Y , for some compact space Y , and the generating

functional of the dual CFTd at the conformal boundary. One of the most remarkable

successes of this duality is the mapping of the conformal anomaly at leading large N [24], as

an outgrowth of the IR-UV connection [23], that relates the classical supergravity (SUGRA)

action in the bulk to a quantum one-loop anomaly on the boundary.

The rank N of the gauge group measures the size of the geometry in Planck units

(LAdS/lP = N1/4), implying that quantum corrections to this classical SUGRA action

correspond to subleading terms in the large N limit of the CFT. At this level, there is

a universal AdS/CFT result, not relying on SUSY or any other detail encoded in the

compact space Y , concerning an O(1) correction to the conformal anomaly under a flow

produced by a double-trace deformation. This correction was first computed in the bulk of

AdS [33] and confirmed shortly after by a field theoretic computation on the dual boundary

theory [34] (see also [35, 36]). Full agreement was finally shown with the help of dimensional

regularization in [37], where we were able to match the anomaly as well as the renormalized

values of the functional determinants involved. In the rest of this section we briefly survey

these preliminary results.

2.1 The generalized prescription for double-trace deformations

A subtle example of the duality involves a scalar field φ with “tachyonic” mass in the

window −d2

4 ≤ m2 < −d2

4 +1, first considered long ago by Breitenlohner and Freedman [39].

Two AdS-invariant quantizations are known to exist, since one may fix either the faster

or slower falloff of the quantum fluctuations of the scalar field at infinity. The modern

AdS/CFT interpretation [40] assigns the same bulk theory to two different dual CFTs in

which the field φ is dual to an operators of dimension λ− and λ+, respectively, and whose

generating functionals are related to each other by Legendre transformation at leading

large N. The conformal dimensions of the dual CFT operators, given by the two roots

λ± = d
2 ± ν (with ν =

√
d2

4 +m2) of the AdS/CFT relation m2 = λ(λ− d), are then both

above the unitarity bound.

The generalized AdS/CFT prescription to incorporate boundary multi-trace opera-

tors [41] provides a dynamical picture: a boundary condition on the bulk scalar relating

linearly the faster falloff part to the slower one corresponds to a double-trace deformation

of the CFT Lagrangian. The two CFTs of above are then the end points of a RG flow

triggered by the relevant perturbation f O2
α of the α−CFT, where the operator Oα has

dimension λ− . The α−theory in the UV flows into the β−theory in the IR, which now has

– 5 –
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an operator Oβ with dimension λ+ = d − λ− conjugate to λ−. The rest of the operators

remains untouched at leading large N , which from the bulk perspective suggests that the

metric and the rest of the fields involved should retain their background values, only the

dual bulk scalar changes its asymptotics.4

2.2 Bulk one-loop effective actions

Since the only change in the bulk is in the asymptotics of the scalar field, pure AdS with

zero scalar field remains a solution of the theory at the classical level for arbitrary linear

boundary conditions on the scalar field. This means that for this trivial scalar field profile

the effect on the partition function cannot be seen at the classical gravity level in the

bulk, i.e. at leading large N . However, the contribution of the quantum fluctuations of the

scalar field, given by the functional determinant of the kinetic term (inverse propagator),

are certainly sensitive to the boundary conditions (reminiscent of the Casimir effect). In

particular, at the endpoints of this RG flow there are two different propagators Gλ−
and

Gλ+ corresponding to the two different AdS-invariant quantizations by fixing the faster or

the slower falloff, respectively. The partition function including the one-loop back-reaction

of the scalar field is given by

Z±
grav = Zclass

grav ·
[
det±(−� +m2)

]− 1
2 , (2.1)

where Zclass
grav refers to the saddle point approximation, i.e. the classical action. Using the

Green’s functions to compute the functional determinants, one realizes that no UV infinities

show up in the ratio Z+
grav/Z

−
grav, since the UV-divergences can be controlled exactly in the

same way for both propagators. In addition, due to the homogeneity of AdS, the volume is

factorized so that the only divergence in the ratio of one-loop corrected partition functions

is the IR one given by the infinite volume of AdS.

The situation is now analog to the leading large N computation of the CFT conformal

anomaly, where the classical Lagrangian density factorizes and is responsible for the N2

factor, and the geometric part is produced by the regularization of the IR-divergent volume

of the bulk. In consequence, from the above correction to the classical gravitational action

(relative change of the effective cosmological term) one can read off an O(1) contribution to

the integrated holographic conformal anomaly, or equivalently to the CFT central charge,

as predicted by Gubser and Mitra [33].

2.3 Boundary partition function

The analysis of the corresponding effect on the boundary, as done by Gubser and Kle-

banov [34], starts by turning on the deformation f O2
α in the α−theory. Then the Hubbard-

Stratonovich transformation (i.e. auxiliary field trick) can be used to linearize in Oα

〈e−
f
2

R

O2
α〉 ∼

∫
Dσ e

1
2f

R

σ2

〈e
R

σOα〉 . (2.2)

4The simplest realization of this behavior being the O(N) vector model in 2 < d < 4, see e.g. [42, 43].
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Now the large-N factorization, which means that the correlators are dominated by the

product of two-point functions, is explicitly used to write

〈e
R

σOα〉N≫1 ≈ e
1
2

R R

σ〈OαOα〉σ . (2.3)

Finally, integrating back the auxiliary field produces its fluctuation determinant Ξ−1/2 =

( I

f +〈OαOα〉)−1/2. The β−CFT is reached in the limit f → ∞, so that modulo unimportant

constant factors

Zβ/Zα = [det 〈OαOα〉]−
1
2 = [det 〈OβOβ〉]

1
2 . (2.4)

Gubser and Klebanov [34] were able to isolate the coefficient of the Euler term in the

conformal anomaly of the above functional determinant on the round d-sphere. Explicit

computations for several values of the dimension (d = 2, 4, 6, 8) produced the same poly-

nomials in ν as those “holographically” predicted by the AdSd+1 computation.

In principle, the holographic recipe should work for any value of the deformation

parameter f . However, away from the conformal choices (f = 0,∞), i.e. at an intermediate

stage of the RG flow, the bulk scalar propagator at coincident points depends on the radial

position and, therefore, the volume factorization breaks down. This makes the bulk one-

loop computation technically more difficult and so far there are no explicit results available,

only the monotonicity of the RG flow has been established [33].

2.4 The functional determinants

The AdS/CFT correspondence claims the equality between the partition functions. In

particular, at the one-loop level in the bulk and at the corresponding subleading large-N

order on the boundary, this implies the equality between the functional determinants (2.1)

and (2.4) involved in Z+
grav/Z

−
grav = Zβ/Zα. As supporting evidence, Hartman and

Rastelli [36] gave a “kinematical” explanation. But, as usual in AdS/CFT correspondence,

the prediction is a formal relation between divergent quantities which has to be properly

regularized to make sense out of it. The only success so far was the correct mapping of the

integrated trace anomaly.5

Finally, in [37] Dorn and the present author were able to find full agreement between

the dimensionally regularized functional determinants for generic even and odd dimension

d. Dimensional regularization (DR) proved to be a sensible scheme that puts bulk and

boundary divergences on equal footing. We extended the mapping from that of the in-

tegrated anomaly to the renormalized partition functions as well (cf. appendix C). The

anomaly can be read as the residue of the pole term. It is important to emphasize that

to correctly reproduce the boundary answer, the contribution from the renormalized vol-

ume Vd+1 is not enough and there is an additional term, non-polynomial in ν, multiplying

5We have been a little cavalier here since the Breitenlohner-Freedman analysis is done in Lorentzian

signature. However, for computational purposes it is easier to consider the Euclidean formulation of the CFT

and the volume renormalization with Riemannian signature, so that a Wick rotation should be performed.

The Feynman propagator for the regular modes (λ+) in AdSd+1 becomes the resolvent in H
d+1, whereas

the continuation to hyperbolic space of the propagator for the irregular modes is only achieved via the

continuation of the resolvent from λ+ to λ− [44].
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the integrated anomaly Ld+1 of the renormalized volume. This means that the “naive”

volume factorization is not quite correct, as explained in [37], and some combination of

UV-vanishing terms from the effective potential and IR-divergent ones from the volume is

needed. However, due to the conformal invariance of Ld+1, we can ignore this additional

term as long as we are interested in the variation under conformal transformations as in

the case of the Polyakov formulas.

3. Digression on regularizations

The successful mapping of the bulk and boundary computations in dimensional regular-

ization is guaranteed by the common regularization tool. It remains unclear which regu-

larization on the boundary corresponds to the usual cutoff (Hadamard) regularization of

the volume in the bulk. If the regularization schemes of the bulk and boundary deter-

minants are not on equal footing, only the universal terms in the anomaly (type A and

B) are guaranteed to coincide. Before embarking ourselves into the study of the behavior

under conformal transformations, let us first illustrate the rigid computation with different

regularization schemes in the simple case of the (positive) Laplacian6 in two dimensions

(d = 2, ν = 1). The raw determinant, involving the eigenvalues l(l + 1) with multiplicity

2l + 1 is simply given by

log det∆ = tr log∆ =
∞∑

l=1

(2l + 1) log [l(l + 1)] , (3.1)

where we have excluded the zero eigenvalue corresponding to constant functions.

Bulk and boundary: dimensional regularization. The full agreement between bulk

and boundary computations using dimensional regularization D = 2 − ǫ as shown in [37],

results in a divergent term and a finite remnant as ǫ → 0, given by (C.5) and (C.6)

respectively. As ν → 1, there is an additional divergence due to the zero mode but it

happens on both sides of the equality and can be removed by starting the sum at l = 1.

After this cancelation and within a “minimal subtraction” prescription, where we just drop

the pole, we get a renormalized value for the functional determinant

log det∆ = −4ζ ′(−1) − 2

3
γ +

1

6
. (3.2)

The integrated anomaly on the two sphere can be directly read from the pole term.

Here L3 happens to be conformal invariant only at the integer dimension d = 2. Away

from it, at D = 2 − ǫ and under constant rescaling g → ĝ = e2αg, it picks up a factor

e(D−2)α = e−ǫ α so that in the limit ǫ → 0 the variation has a zero e−ǫ α − 1 that cancels

exactly the pole and we end up with minus the residue. But the variation of the finite

remnant, the renormalized value, is just minus the variation of the divergent part that

6An immediate check of the connection with GJMS operators comes from the direct evaluation of the

eigenvalue
Γ(l+ d

2
+ν)

Γ(l+ d

2
−ν)

of the intertwiner (see C.3) at integer values ν = k. These are precisely the eigenvalues

of the GJMS operator P2k on the standard sphere (cf. theo.2.8(f) in [13], or [45]).
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is thrown away in the renormalization prescription. In all, the contribution of the local

curvature invariants to the integrated conformal anomaly in the present case is just

L3 ·
[
−

∫ 1

0
dx 4xA2(x)

]
= −2

3
. (3.3)

Alternatively, one can use the fact that in the renormalized result (finite remnant) at d = 2

only the term proportional to the renormalized volume V3 is anomalous. The integrated

anomaly corresponding to the renormalized volume is known to be just L3. Keeping track

on the coefficient, we find again the same result as above.

However, there is still a missing contribution (a global term) from the exclusion of the

zero mode, as g → ĝ = e2αg the eigenvalues are also rescaled λl → λ̂l = e−2αλ so that we

must consider:

−2α

∞∑

l=1

deg(D, l) . (3.4)

In dimensional regularization, the sum over degeneracies starting with l = 0 vanishes, so

that the above renders an additional contribution 2α deg(D, 0) = 2α. In all,

log
det∆̂

det∆
= −2

3
α+ 2α =

4

3
α . (3.5)

This totally agrees with the Polyakov formula evaluated for a constant rescaling w = α.

The first contribution −2
3α comes from the Q-curvature term 2 c

∫
M wQn dvg, which is pre-

cisely the conformal index of Branson and Ørsted [46], and the remaining 2α corresponds to

the global term associated to the zero mode. From the rigid computation on the sphere we

can therefore read the coefficient of the Q-curvature term (type A anomaly) as well as the

global term. We get no information, however, on the local invariant term F in the Polyakov

formula because it is scale invariant and, therefore, under rigid rescaling doesn’t show up.

The corresponding extension of this computation to higher dimensions and to the

whole family of GJMS operators is straightforward in dimensional regularization.

Boundary: zeta-regularization. The zeta regularization produces directly a renor-

malized determinant

log det∆ = −ζ ′∆(0) , (3.6)

in terms of the zeta function on the two-sphere

ζ∆(s) =
∑

λ>0

λ−s =

∞∑

l=1

2l + 1

[l(l + 1)]s
. (3.7)

The above representation is valid for Re(s) > 1, the analytic continuation to s = 0 can be

accomplished by rewriting in terms of better studied zeta functions, such as Riemann and

Hurwitz zeta functions. The result in the present case can be shown to be [47]

log det∆ = −4ζ ′(−1) +
1

2
. (3.8)
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The integrated anomaly can be read in this case from the variation under rigid rescaling

log detÂ − log detA = −2α ζA(0). The input we need is the zeta function ζ∆(0) = −2
3 to

finally get

log
det∆̂

det∆
=

4

3
α . (3.9)

Extensions of this computation to higher dimensions can be attacked with methods

similar to those of [48]. The calculations are rather lengthly and explicit results, to our

knowledge, do not cover the Paneitz operator or any other of the higher GJMS operators.

Boundary: large-eigenvalue cutoff. Finally, we want to present yet another regular-

ization tool which is simply a cutoff lc in the sum over eigenvalues. It is physically appealing

due to its role regarding the holographic bound in AdS/CFT [23]: the IR-UV connection

forces the number of cells in the coarse-grained sphere to be ǫ−3; however, if one instead

truncates at lc the spherical modes, then the number of modes plays now the same role as

the number of cells did before. The number of modes is given by the counting function

(whose asymptotics is in general given by Weyl’s asymptotic formula) that grows as l3c in

this case. In all, the identification lc · ǫ ∼ 1 between the UV-cutoff lc and the IR-cutoff ǫ is

enforced by the requirement of (roughly) one degree of freedom per unit Planck area.

To compute log det∆ we have to consider the finite sum

lc∑

l=1

(2l + 1) log [l(l + 1)] = 4

lc∑

l=1

l log l + (2lc + 1) log(lc + 1) . (3.10)

The large lc asymptotics of the remaining sum is determined by the Glaisher-Kinkelin

constant A given by

112233 . . . nn = nn2/2+n/2+1/12 e−n2/2(A+ o(1)) , (3.11)

as n→ ∞, where logA = 1
12 − ζ ′(−1). The total contribution for the regularized determi-

nant is then

−4ζ ′(−1) +
7

3
+

(
2l2c + 4lc +

4

3

)
log lc −

1

4
l2c . (3.12)

We want to read now the integrated anomaly from the log-term, but there seems to be

new divergent terms which have no analog in the volume regularization nor in heat kernel

asymptotics. For example, using a “proper-time” cutoff δ → 0, the heat kernel produces

log det∆ = −
∫

δ

dt

t

{
1

4πt

∫

S2

dvol

[
1 +

R

6
t

]
− dimker∆

}
+ finite

= − 1

2δ
+

2

3
log

1

δ
+ finite, (3.13)

and IR-UV connection relates the cutoffs as ǫ ∼
√
δ in rough agreement with the volume

asymptotics. Although a physical interpretation of these extra log-divergencies is still

obscure to us, their structure is simple enough. They are in fact proportional to the

counting function with the order of the operator as proportionality factor, 2·∑lc
l=1(2l+1) =

2 ·(l2c + lc). We can subtract them so that the two residual divergences left are the expected
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ones in view of the identification lc ·
√
δ ∼ 1. In the present case, the integrated anomaly

4
3 shows up as coefficient of log lc and the renormalized determinant, given by

−4ζ ′(−1) +
7

3
, (3.14)

correctly reproduces the ‘most transcendental’ part −4ζ ′(−1) which is common to the two

previous regularization alternatives.

The above procedure can be (straightforwardly but tediously) adapted to the higher-

dimensional spheres and to the whole family of GJMS. The corresponding asymptotic

estimates are determined by the Glaisher-Kinkelin-Bendersky constants [49](see also [50])

in this case.

Bulk: Hadamard regularization of the volume. The cutoff regularization of the

volume [24, 18] produces a null renormalized volume when evaluated for the standard

metric of H3, so that the volume asymptotics is given by

Vol({r > ǫ}) =
π

2ǫ2
− 2π log

1

ǫ
+ o(1) . (3.15)

When multiplied by the effective potential, the Hadamard-regularized volume will correctly

reproduce the anomaly but not the finite remnant, not even the −4ζ ′(−1) piece. A com-

pensation between divergences in the volume and vanishing terms in the effective potential,

that in dimensional regularization conspired to produce the correct boundary result, is still

missing here.

4. The general case of Poincare metrics

After this preamble, let us now turn to the main theme. To relax the rigidity, we must

first consider a generalization [21] of the AdS/CFT Correspondence in terms of a d +

1−dimensional (asymptotically) Einstein manifold X with negative cosmological constant,

that has a compactification consisting of a manifold with boundary X whose boundary

points are M and whose interior points are X with a metric g+ on X that has a double

pole near the boundary so that it defines a conformal structure [g] on M , i.e. the bulk

metric is that of a conformally compact (asymptotically) Einstein manifold. This defines

(X; g+) as a d+1 dimensional manifold with a Poincare metric and (M ; [g]) as its conformal

infinity. Such g+ is also asymptotically hyperbolic.7

We are then naturally led to the following guess for the functional determinants in-

volved in the one-loop bulk correction and the corresponding subleading large-N term on

the boundary:

log
det+[∆X − λ(d− λ)]

det−[∆X − λ(d− λ)]
= − log det SM (λ) . (4.1)

Alternatively, the evaluation of the bulk determinant using the Green’s function method by

taking the derivative with respect to the spectral parameter leads to the following relation

7In the physics context, this generalization is usually described by the somehow less rigorous notion of

asymptotically (Euclidean) anti-de Sitter metrics.

– 11 –



J
H
E
P
0
7
(
2
0
0
8
)
1
0
3

in term of the resolvent RX(λ) and its analytic continuation RX(d− λ)

(d− 2λ) tr [RX(λ) −RX(d− λ)] = tr

[
S−1

M (λ)
d

dλ
SM (λ)

]
. (4.2)

An analog relation has been shown to be valid by Guillarmou ([51], theo. 1.2) for certain

generalized variants of the trace, but for the case in which d happens to be odd and the

functional determinants are conformal invariants.

Unfortunately, the above functional determinants are too difficult to compute in gen-

eral. Only in very symmetric situations they can be explicitly computed. In addition, the

determinant of the scattering operator as than of an elliptic pseudo-differential operator is a

largely unexplored object. Yet, Polyakov formulas for the ratio of functional determinants

at conformally related metrics capture valuable information; they only fail to account for

conformally invariant terms. To make some progress, we will then be rather interested in

the variation under conformal rescaling of the boundary metric for even d and consider the

continuation in the spectral parameter (ν → k, k = 1, 2, . . . , d/2) to make contact with

the GJMS operators P2k, which are better known, and with their corresponding Polyakov

formulas. Conformal flatness of the boundary metric is not assumed in the above guess, so

that under conformal rescaling both type A and type B anomalies will be present. However,

in this paper we will restrict to the conformally flat situation where the bulk computation

will be reduced to that of the volume renormalization as we will next show.

5. Conformally flat class and volume renormalization

To read the (infinitesimal) anomaly, one has to be able to compute the variation under

a Weyl rescaling of the boundary metric. We let the boundary metric to be conformally

related to the standard one on the sphere, so that the bulk geometry is still (isometric to)

the hyperbolic space [22, 38]. In this case, the resolvent is explicitly known in terms of the

hypergeometric function and one easily gets

[RX(λ) −RX(d− λ)] (x, x) = 2Ad(ν) , (5.1)

with A(d)(ν), essentially the Plancherel measure on hyperbolic space at imaginary argu-

ment, as in (C.2). There is no dependence on the position due to the homogeneity of Hd+1,

and therefore the volume factorizes when taking the trace. Integrating back in ν, we get

for the “bare” determinant

[∫ k

0
dν 2νAd(ν)

]
·
∫

Hd+1

dvolg+ = −1

2
log detP2k . (5.2)

A renormalized version (in DR) leaves a finite remnant of the IR-divergent bulk vol-

ume, i.e. the renormalized volume Vd+1, and additional conformally invariant terms with a

non-polynomial dependence in k which play no role in the analysis of the conformal varia-

tion. The generalized Polyakov formula relating the functional determinants of the GJMS
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conformal Laplacians at conformally related metrics ĝ = e2wg in even dimension d, up to

the global term, is proportional to the conformal variation of the renormalized volume

−1

2
log

det P̂2k

detP2k
=

[∫ k

0
dν 2νAd(ν)

]
·
(
V̂d+1 − Vd+1

)
. (5.3)

5.1 The infinitesimal variation: conformal anomaly

We have now to deal with the conformal variation of the renormalized volume Vd+1 as a

functional of the boundary metric representative g. Up to total derivative terms, we can

rely on the well known results obtained via a radial cutoff. The infinitesimal variation of

the Hadamard-renormalized volume (see e.g. [18]) is given by the coefficient v(d) of the

volume expansion
d

dε
V[e2εwg] |ε=0=

∫

M
w v(d) dvg , (5.4)

i.e. a trace anomaly
2√
g
gµν δ

δgµν
V[g] = v(d) . (5.5)

To get the Q-curvature term we make then use of the holographic formula [26]

2cd/2 Q = v(d) + · · · , (5.6)

where ck = (−1)k[22k(k)!(k − 1)!]−1 and the ellipsis stands for derivative terms involving

lower coefficients v(k). The universal Type A anomaly of −1
2 log detP2k, encoded in the

Q-curvature term or in the Euler term, is finally given by

2 cd/2

[∫ k

0
dν 2νAd(ν)

]
·Qd . (5.7)

5.2 Type A holographic anomaly

In an independent development, the authors of [52] were able to work out the type A

holographic anomaly, coefficient of the Euler term, coming from a generic gravitational

action which admits AdS as solution (see also [53] for an alternative derivation). The

input needed is the Lagrangian density evaluated for the AdS metric, i.e. it suffices to

examine the rigid situation (in Euclidean signature) for hyperbolic space. We can now use

this general result combined with the one-loop computation [37] for the rigid case, to get

[∫ k

0
dν 2νAd(ν)

]
· Ed

2d(d/2)!
. (5.8)

Now, keeping track on the normalizations we can translate Ed = (−2)d/2(d/2)! Pff to the

Pfaffian, according to the conventions of [26] and further use the relation between the

Pfaffian and the v(d) coefficient in the conformally flat case v(d) = (−2)d/2

(d/2)! Pff. We find then

full agreement with the previous result (5.7) obtained using the volume renormalization.
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5.3 Conformal primitive: Polyakov formulas

To obtain Polyakov formulas for the quotient of the functional determinant at conformally

related metrics, we have to find the conformal primitive of the infinitesimal anomaly. This

we can readily do in two ways. We can apply a result by Branson for the conformal

primitive of the Q-curvature term, which gives the universal part
∫
Mw(Qd + 1

2 Pd w) dvg

in Polyakov formulas.

Alternatively, via the connection between the renormalized volume and scattering the-

ory [25] Chang, Qing and Yang [54] have found an explicit expression for V̂d+1 − Vd+1 as

conformal primitive of v(d). It contains the universal part of above and additional local cur-

vature invariant terms to correctly reproduce the holographic formula relating Qd and v(d).

We get then, up to the global term, for the finite conformal variation of the functional

determinant

−log
det P̂2k

detP2k
= c(d,k)

∫

M
w

(
Q̂d dvĝ +Qd dvg

)
+

∫

M

(
F̂ dvĝ − F dvg

)
(5.9a)

= 2 c(d,k)

∫

M
w

(
Qd +

1

2
Pd w

)
dvg +

∫

M

(
F̂ dvĝ − F dvg

)
, (5.9b)

where

c(d,k) = 2 cd/2

[∫ k

0
dν 2ν Ad(ν)

]
=

(−1)d/2

(4π)d/2 (d− 1)! (d/2)!

∫ k

0
dν (ν) d

2
(−ν) d

2
, (5.10)

with Ad(ν) given as in (C.2), and the curvature invariants in the F -term, which are

regularization-scheme dependent, enter with different coefficient as in the conventional

zeta-regularized determinants. There is clearly a mismatch between zeta-regularization

on the boundary and Hadamard regularization in the bulk, as we will see, and only the

universal Q-curvature term is correctly reproduced. Any scheme that renders the Einstein-

Hilbert action finite (see e.g. [30, 55]) is associated to a renormalized volume. A finite

(renormalized) bulk action induces an effective action for the conformal mode on the con-

formal boundary which gives essentially the Polyakov formula; this has been explicitly

shown in [56] and [57] where the Liouville and Riegert actions, respectively, have been ob-

tained. The advantage of the result by Chang, Qing and Yang [54], besides being simpler

and compact, is that the local curvature invariants can be explicitly derived and not only

their finite variation under conformal rescaling.

6. Comparison to “experiment”

Here we collect all explicit results we are aware of for the GJMS Laplacians, all of them

computed via standard zeta-regularization. Most of the known Polyakov formulas are due

to Branson and collaborators (see e.g. [13] and references therein), whose main motivation

was related to sharp inequalities and extremal problems for the functional determinant.

The particular values of the coefficients and the local invariants that enter in the formulas

are extracted from the relevant heat invariants, which are rewritten in the basis of the

Q-curvature, the Weyl invariants plus a total derivative.
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Laplacian, d=2. This case is the best known in physics, the original8 Polyakov for-

mula [8] for the effective action (conformal primitive) of the two-dimensional trace anomaly:

−log
det ∆̂

det∆
=

1

24π

∫

M
w

(
R̂ dvĝ +Rdvg

)
− log

vol(ĝ)

vol(g)

=
1

12π

∫

M
w

(
R+

1

2
∆w

)
dvg − log

vol(ĝ)

vol(g)
, (6.1)

In two dimensions the Q-curvature is given by the Schouten scalar which is half the

scalar curvature (Q2 = J = R/2), and the conformal Laplacian or Yamabe operator is

simply the Laplacian (P2 = Y = ∆).

Yamabe, d=4. The result for the Yamabe operator was first obtained by Branson

and Ørsted [58], although the general structure in four dimensions was anticipated by

Riegert [7]. The input needed is the heat kernel coefficient a4(Y ) (see e.g. [59]), then re-

strict to the conformally flat class to read the coefficient of the Q-curvature as well as the

local curvature invariants entering in the Polyakov formula to finally write:

− 1

2
(4π)2 log

det Ŷ

detY
= − 1

180

∫

M
w

(
Q̂ dvĝ +Qdvg

)
− 1

90

∫

M

(
Ĵ2 dvĝ − J2 dvg

)

= − 1

90

∫

M
w

(
Q+

1

2
P w

)
dvg −

1

90

∫

M

(
Ĵ2 dvĝ − J2 dvg

)
, (6.2)

where Q is the four-dimensional Q-curvature, P is the Paneitz operator and J = R
2(d−1) is

the Schouten scalar.

Paneitz, d=4. For the Paneitz operator in four dimensions, the corresponding Polyakov

formula was obtained by Branson [60] and the heat invariant input needed was computed

from Gilkey’s work [61],

− log
det P̂

detP
=

1

720π2

[
14

∫

M
w

(
Q̂ dvĝ +Qdvg

)
− 32

∫

M

(
Ĵ2 dvĝ − J2 dvg

)]
− log

vol(ĝ)

vol(g)

=
1

720π2

[
28

∫

M
w

(
Q+

1

2
Pw

)
dvg−32

∫

M

(
Ĵ2dvĝ−J2dvg

)]
−log

vol(ĝ)

vol(g)
. (6.3)

Yamabe, d=6. The six-dimensional case for the Yamabe operator was worked out by

Branson [13]. The starting point is the heat kernel coefficient a6 computed by Gilkey [59],

restricted to the conformally flat case.

−3 · 7! (4π)3

2
log

det Ŷ

detY
=5

∫

M
w(Q̂6 dvĝ +Q6 dvg) + 13

∫

M
(|∇̂Ĵ |2 dvĝ − |∇J |2 dvg)

+34

∫

M
(Ĵ3dvĝ−J3dvg)−32

∫

M
(Ĵ |V̂ |2dvĝ−J |V |2dvg) . (6.4)

Here the local invariant involves now the Schouten tensor V = Ric−Jg
d−2 as well.

8These formulas ought to be called Polyakov formulas in “Liouville’s form”. The celebrated non-local

covariant form in terms of the Green’s function of Pd is obtained after eliminating the conformal factor w

by solving the conformal relation
√

g Pd w =
√

ĝ bQd −
√

g Qd.
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d = 4 d = 6 d = 8 d = 10

ζY (0) − 1
90

1
756 − 23

113400
263

7484400

Table 1: ζY (0) on Sd

Yamabe, d=8. The eight-dimensional case for the Yamabe operator was worked out

by Branson and Peterson [62], where the necessary input was computed from Avramidi’s

result [63] for the relevant heat invariant. At this stage, the computation becomes almost

prohibiting and it was only done with computer aided symbolic manipulations9

−(4π)4

2
log

det Ŷ

detY
= − 23

1360800

∫

M
w(Q̂8 dvĝ +Q8 dvg) + · · · . (6.5)

6.1 Further data for the conformal Laplacian

As far as we are interested in the type A anomaly coefficient, we can make a longer list

based on explicit computations on the spheres via zeta regularization. Once we know the

zeta-function of the operator ζA(0) on the sphere and the dimension q(A) of its kernel,

we can work out the coefficient of the Euler term or, equivalently, the coefficient of the

Q-curvature. The main relation is given by the conformal index theorem [46] restricted to

the conformally flat class:

ζA(0) + q(A) =
c

l

∫

M
Qd dvg , (6.6)

where 2l is the order of the differential operator A. There is a vast literature computing

the zeta function for the (conformal) Laplacian on the round sphere. They generalize early

results by Weisberger [47] and are rather lengthly calculations. Remarkably, there is a

compact recipe obtained by Cappelli and D’Appollonio [64] for d ≥ 4

ζY (0) = − 1

(d− 1)!

∫ B(1+B)

0
dt

d/2−2∏

i=0

[t− i(i + 1)], (6.7)

where, after performing the integral, one has to substitute the powers Bn by the Bernoulli

number Bn. This produces the results in table 1.

In this case, q(Y ) is 1 in two dimensions and zero for all other even dimensions

ζY (0) + q(Y ) = cY (d) Γ(d)V ol(Sd) = cY (d) Γ(d)
2π

d+1
2

Γ(d+1
2 )

, (6.8)

so that we can check the coefficient of the Q-curvature cY (d) := c(d,1) for the Polyakov

formula for the conformal Laplacian (5.10) in any even dimension.

We find agreement with all these values. Our holographic result for the conformal

Laplacian (k = 1) can be easily compared to the above formula, the integral of the Q-

curvature on Sd is simply the volume of the sphere times the constant value Γ(d) of the

9I am indebted to L. J. Peterson for providing the coefficient of the Q-curvature term and valuable

explanations.
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(d + 1)! · (4π)d/2 · c(d,k)

k = 1, Yamabe k = 2, Paneitz k = 3 k = 4 k = 5

d = 2 2 X - - - -

d = 4 −4/3 X 112/3 X - - -

d = 6 10/3 X −64/3 738 - -

d = 8 −184/15 X 832/15 −1944/15 253184/15 -

d = 10 526/9 X −1984/9 1026 −75776/9 4016750/9

Table 2: Q-curvature coefficient c(d,k) in Polyakov formulas for GJMS operators

Q-curvature on the round sphere. We get then for the conformal index an even simpler

formula

ζY (0) + q[Y ] =
2(−1)d/2

d!

∫ 1

0
dν (ν) d

2
(−ν) d

2
=

2(−1)d/2

d!

∫ 1

0
dν

d/2−1∏

i=0

[i2 − ν2] . (6.9)

7. Conclusion

The main thrust of this paper has been towards a holographic derivation of Polyakov formu-

las for GJMS operators. On one hand, this constitutes an important test of the AdS/CFT

correspondence in the general case of a Poincare metric in the bulk. The holographic

description of double-trace deformations of the boundary CFT and the conjectured equal-

ity between partition function at the one-loop quantum level in the bulk and subleading

large-N order on the boundary lead to a remarkable identity between functional deter-

minants. We have been able to make progress in the case of conformally flat boundary

metrics, reducing the bulk computation to that of volume renormalization. This makes, on

the other hand, a direct connection between the Q-curvature that appears in the volume

renormalization of Poincare metrics and the universal Q-curvature term in the Polyakov

formulas for conformally covariant operators. We get a generic formula (5.10) for the type

A conformal anomaly associated to the whole family of GJMS operators, in agreement with

some previously known results that we summarize in table 2.

Graham [18] already noticed that the invariance properties of the renormalized volume

V are reminiscent of those for the functional determinant of the conformal Laplacian, which

is conformally invariant in odd dimensions but which has an anomaly in even dimensions,

and that the properties of the invariant L are, on the other hand, similar to those for the

constant term in the expansion of the integrated heat kernel for the conformal Laplacian,

which vanishes in odd dimensions but in even dimensions is a conformal invariant obtained

by integrating a local expression in curvature. In this note, we have gone further and shown

that the above similarities can be promoted to equalities, up to regularization-scheme

dependent terms. The Polyakov formulas obtained via volume renormalization correctly

reproduce the universal Q-curvature term. However, the coefficients of the additional local

curvature invariants are different from those obtained via ζ-regularization on the compact
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k = 1, Yamabe k = 2, Paneitz k = 3 k = 4 k = 5

d = 2 −2
3 X - - - -

d = 4 − 1
90 X −38

45 X - - -

d = 6 1
756 X − 4

945 −379
420 - -

d = 8 − 23
113400 X

13
28350 − 1

1400
562603
604800 -

d = 10 263
7484400 X − 31

467775
19

92400 − 592
467775 −283309

299376

Table 3: ζP2k
(0) on Sd

boundary. It thus remains a challenge to find a bulk regularization that corresponds to the

ζ-regularization on the boundary.

Notwithstanding, we can unambiguously write down a compact formula for the zeta

function of the GJMS operators on the round sphere

ζP2k
(0) + δd,2k =

2

k

(−1)d/2

d!

∫ k

0
dν (ν) d

2
(−ν) d

2
, (7.1)

which correctly reproduces all values reported in the literature and predicts new ones

(table 3). It would be desirable to have a confirmation of these results; one possible way

goes via the relation of the conformal anomaly with the Wodzicki residue (see e.g. [65])

and the computation of the later using symbol calculus.

We have favored the Q-curvature, rather than the Euler density, to describe the type

A anomaly. This is mainly due to its simpler transformation law under conformal rescaling

and its simpler conformal primitive. In conformal geometry, the Q-curvature certainly

plays a central role and has been intensively studied in recent years. On the physical side,

it has been less explored; however, let us mention that some purely QFT considerations

regarding the irreversibility of the RG flow, unitarity and positivity of the induced action

for the conformal factor and a-theorem have led Anselmi [66, 67] to introduce a “pondered

Euler density” in the study of conformal anomalies. This “pondered Euler density” has

a linear transformation law under conformal recaling, therefore it is nothing but the Q-

curvature modulo Weyl invariant terms. Moreover, the explicit expression for d = 6 in [67]

coincides with Branson’s Q6 in six dimensions [68].

There are still several interesting issues to be explored. Going beyond conformal flat-

ness will switch on the Weyl-terms whose number grows with the dimension. Here, the

issue of uniqueness of the filling Poincare metric, together with the topology of the confor-

mal boundary, will surely play an important role.10 Even the rigid case of hyperbolic space

can be extended to quotients by symmetry groups, as is the case of Kleinian groups, where

connections with number theory via Selberg zeta functions naturally arise (see e.g. [71, 72]

and [73], section2.9, for a related discussion). In another direction, the relation between

Polyakov formulas, extremal of functional determinants and sharp inequalities [13] may

well admit a holographic interpretation in terms of the bulk geometry.

10In a celebrated example due to Hawking and Page [69], where the AdS Schwarzschild black hole and

thermal AdS share the same conformal infinity, the bulk one-loop effect corresponding to the double-trace

deformation has already been explored in [70].
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A. GJMS operators and Q-curvature

To give a glimpse of these constructions in conformal geometry, let us go back to the

Poincare patch and examine the analytic continuation to λ > d/2 of the kernel

1

|−→x ′ −−→x |2λ
. (A.1)

It will have single poles at λ = d/2 + k, k ∈ N, since in the neighborhood of these values

(see e.g. [74])

lim
λ→d/2+k

λ− d/2 − k

|−→x |2λ
= −ck ∆k δ(d)(−→x ) (A.2)

where

ck =
1

22k k! (k − 1)!
. (A.3)

Therefore for these “resonant values” the action of the kernel reduces to that of the k-th

power of the Laplacian ∆k, a conformal invariant (covariant) differential operator.11

The generalization of this observation [25] for a filling Poincare metric associated to a

given conformal structure involves P2k, the conformally invariant operators of GJMS [9].

GJMS operators. The GJMS operators P2k built using the Fefferman-Graham ambient

construction have, among others, the following properties in a d-dim Riemannian manifold

(M,g)

• On flat R
d, P2k = ∆k

• P2k ∃ k ∈ N and k − d/2 6= Z
+

• P2k = ∆k + (lower order terms)

• P2k is self-adjoint

• for f ∈ C∞(M), under a conformal change of metric ĝ = e2σg, σ ∈ C∞(M), confor-

mal covariance: P̂2kf = e−
d+2k

2
σP2k(e

d−2k
2

σf)

• P2k has a polynomial expansion in ∇ and the Riemann tensor (actually the Ricci

tensor) in which all coefficients are rational in the dimension d

• P2k has the form ∇ · (Sk∇) + d−2k
2 Qd

k, where Sk = ∆k−1 + (lower order terms) and

Qd
k is a local scalar invariant.

11There is a factor (−1)k hanging around, just because in the mathematical literature the positive Lapla-

cian is preferred.
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Q-curvature. The Q − curvature generalizes in many ways the 2-dim scalar curvature

R. It original derivation tries to mimic the derivation of the prescribed Gaussian curvature

equation (PGC) in 2-dim starting from the Yamabe equation in higher dimension and

analytically continuing to d = 2.

Start with the conformal transformation of the scalar curvature at d ≥ 3

e2σR̂ = R+ 2(d− 1)∆σ − (d− 1)(d − 2)∇σ · ∇σ (A.4)

and absorb the quadratic term

∆σ − (d/2 − 1)∇σ · ∇σ =
2

d− 2
e−(d/2−1)σ ∆ e(d/2−1)σ , (A.5)

to get for the Schouten scalar J := R
2(d−1) and u := e(d/2−1)σ the Yamabe equation

[∆ + (d/2 − 1)J ]u = (d/2 − 1) Ĵ u
d+2
d−2 . (A.6)

The trick (due to Branson) is now to slip in a 1 to rewrite as

∆(e(d/2−1)σ − 1) + (d/2 − 1)J e(d/2−1)σ = (d/2 − 1) Ĵ e(d/2+1)σ (A.7)

and take now the limit d→ 2 that results in the PGC eq.

e2σ Ĵ = J + ∆σ. (A.8)

The very same trick applied now to the higher-order Yamabe eq. based on the GJMS

operators

P2k u = ∇ · Sk∇ (u− 1) + (d/2 − k)Qd
2k u = (d/2 − k) Q̂d

2k u
d+2k
d−2k (A.9)

with u = e(d/2−k)σ , in the limit d→ 2k renders the higher (even-)dimensional generalization

of the PGC eq.

edσQ̂ = Q+ P σ , (A.10)

where Q := Qd
d and P := Pd.

Among the properties of the Q-curvature, the conformal invariance of its volume inte-

gral easily follows.

B. Q-curvature and volume renormalization

Let the bulk metric to be that of an conformally compact (asymptotically) Einstein man-

ifold, i.e. Ric(g+) = −d g+. The bulk geometry can be partially reconstructed by an

asymptotic expansion, which is essentially the content of the Fefferman-Graham theo-

rem [10]. One can always find local coordinates near the boundary (at r = 0) to write the

bulk metric as

g+ = r−2{dr2 + gr}. (B.1)
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Euclidean AdSd+1 corresponds to the choice gr = (1 − r2)2g0 with 4 g0 being the round

metric on the sphere Sd. The “reconstruction” theorem leads to the asymptotics

d odd :

gr = g(0) + g(2)r2 + (even powers) + g(d)rd + · · · (B.2)

d even :

gr = g(0) + g(2)r2 + (even powers) + g(d)rd + hrdlog r + · · · (B.3)

where g(0) = g is the chosen metric at the conformal boundary. For odd d, g(j) are tensors

on the boundary and g(d) is trace-free. For 0 ≤ j ≤ d − 1, g(j) are locally formally

determined by the conformal representative but g(d) is formally undetermined, subject to

the trace-free condition. For even d, g(j) are locally determined for j even 0 ≤ j ≤ d−2, h is

locally determined and trace-free. The trace of g(d) is locally determined, but its trace-free

part is formally undetermined. All this is dictated by Einstein equations.

The volume element has then an asymptotic expansion

dvg+ =

√
detgr

detg

dvg dr

rd+1

= {1 + v(2)r2 + (even powers) + v(d)rd + · · · }dvg dr

rd+1
, (B.4)

where all coefficients v(j), j = 1 . . . d are locally determined in term of curvature invariants

of the boundary metric and v(d) = 0 if d is odd.

Before taking the r−integral, a regularization is needed. Then a subtraction (renor-

malization) prescription renders a finite answer when the regulator is removed. When d is

odd, the finite remnant V in the expansion (renormalized volume) turns out to be indepen-

dent of the conformal choice of the boundary metric. If d is even, in turn, V is no longer

invariant and its variation under a Weyl transformaton of the boundary metric gives rise

to the conformal anomaly. It is the coefficient L of the logǫ-term in the Hadamard (cutoff)

regularization or residue at the pole in dimensional and Riesz regularizations

L =

∫

M
v(d) dvg , (B.5)

given by the integral of a local curvature expression on the boundary, the invariant one

in this case. The variation of V happens to be connected to this invariant: g → e2wg for

infinitesimal w makes V → V +
∫
w v(d) dvg in the Hadamard regularization scheme.

The Q-curvature enters here and provides one of the important terms in volume renor-

malization asymptotics at conformal infinity [25]

L = 2 cd/2

∫

M
Qd dvg . (B.6)

Therefore, the Q-curvature is then proportional to the v(d) coefficient in the volume

expansion, up to total-derivative terms which are explicitly given by the “holographic

formula” [26].
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C. Rigid case in dimensional regularization

The rigid computation in the bulk involves the volume renormalization of the ball model

of the hyperbolic space with the standard metric:

−logZ+
grav/Z

−
grav =

[∫ ν

0
dx 2xAd(x)

]
·
∫

Hd+1

dvol . (C.1)

The factor in square brackets comes from the difference of the one-loop effective potentials

associated to the two asymptotic behaviors, whose short distance divergences cancel out

to render a finite result with

Ad(ν) =
1

2ν

1

2d π
d
2

(ν) d
2
(−ν) d

2

(1
2) d

2

(C.2)

conveniently written in terms of the Pochhammer symbol (a)b := Γ(a+ b)/Γ(a).

The boundary computation on the standard sphere S
d, expanding in spherical har-

monics, results in an UV-divergent sum

−2 logZβ/Zα =
∞∑

l=0

deg(d, l) log
Γ(l + d

2 + ν)

Γ(l + d
2 − ν)

. (C.3)

Here we have a weighted sum with the degeneracies of the spherical harmonics

deg(d, l) =
2l + d− 1

d− 1

(d− 1)l
l!

, (C.4)

and the ratio
Γ(l+ d

2
+ν)

Γ(l+ d
2
−ν)

are nothing but the eigenvalues of the intertwiner (cf. eq.2.13 in [13])

between conjugate representations (with conformal labels λ− and λ+), which is the two-

point function 〈OβOβ〉 on the round sphere (see e.g. [75]).

We extended the mapping from that of the integrated anomaly to the renormalized

partition functions as well. The anomaly can be read as the residue of the pole term

Ld+1 · Ad(ν) , (C.5)

and the renormalized determinant is given by

−logZ+
grav/Z

−
grav =

[∫ ν

0
dx 2xAd(x)

]
· Vd+1 +

[∫ ν

0
dx 2xBd(x)

]
· Ld+1 , (C.6)

where

Bd(ν) =
Ad(ν)

2

{
log(4π) + ψ

(
1

2
− d

2

)
− ψ

(
d

2
+ ν

)
− ψ

(
d

2
− ν

)}
. (C.7)
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